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NOMENCLATURE 

cross-sectional area of duct; 
area subtended by the ith flat side of duct; 
area subtended by thejth curved side of duct ; 
a constant; 
distance measured along the ith side of duct 
from a comer to the tangent point of the 
inscribed circle ; 
thermal conductivity of fluid ; 
width of the ith flat side of duct ; 
total number of flat sides of an inscribable 
duct ; 
total number ofcurved sides ofan inscribable 
duct ; 
inward normal to duct’s surface; 
perimeter of duct’s cross-section ; 
wall heat flux at duct’s inside surface; 
cylindrical coordinates ; 
hydraulic radius and radius of circle in- 
scribed in duct’s cross section, rh = 2A/P; 

square of radius of gyration of duct’s cross- 
section ; 
equation for duct’s inside surface ; 
temperature ; 
temperature at duct’s entrance ; 
time ; 
velocity of fluid in z direction ; 
velocity of fluid in r direction ; 
velocity of fluid in 0 direction ; 
Cartesian coordinates ; 

Z, thermal entrance length ; 
a, thermal diffusivity of fluid. 

Subscripts 
b, 
C, 
4 
.l* 
n, 
0, 
% 
1, 

bulk temperature ; 
center or axis of duct ; 
the ith flat side ; 
the jth curved side ; 
normal to duct’s surface ; 
duct’s entrance ; 
at duct’s surface ; 
some point in fluid after thermal entrance 
region. 

INTRODUCTION 

FLUID flow passages in modem heat exchange systems are 
often of noncircular cross-sectional shape. In fact, heat 
transfer passages which are employed in aircraft, missiles, 
space vehicles and nuclear reactors are more o&en than not 
noncircular. In these engineering applications it is of utmost 
importance that the heat exchange systems operate as 
efficiently and as safely as possible. However, at the present 
time comprehensive design criteria which can be utilized to 
analyze the fluid mechanics and heat transfer associated 
with the various components of these systems are sparse. 
This is because it is quite difficult to simultaneously analyze 
the problem of combined fluid mechanics and heat transfer 
in irregularly shaped channels as has been pointed out by 
Sparrow and Haji-Sheikh [l] and Wilson and Medwell [2]. 

To ease this situation one often seeks to separate the heat 
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transfer and fluid mechanics problems and thus reduce the 2. All regular polygonal ducts. 
governing system of equations to tractible forms and in turn 3. All regular star shaped ducts. 
obtain “annroximate solutions”. The techniaue most often 4. The circular tube. __ 
used for separating the fluid mechanics from the heat 
transfer is to assume that the fluid properties are independent 

For steady incompressible slug flow (u = constant, o, = 

of temperature, while the technique most often used for 
I’~ = 0). negligible thermal radiation. constant fluid proper- 

separating the heat transfer from the fluid mechanics is to 
ties and constant wall heat flux, the energy equation is 

assume that the fluid velocity is constant across the duct’s 1 a2T aZT udT 
(1) 

cross-section. The assumption of fluid properties inde- 
pendent of temperature is used often and its implications 
are in manv cases not dillicult to ascertain. On the other 

and the boundary conditions can be written as : 

hand, the assumption of slug flow in most situations does aT 
not lead to heat transfer results which can be directly an= 

- $ on S(r, 0) = 0. (2) 

applied to the physical problem. However, there are tech- 
niques available, Hartnett and Irvine [3] and Claiborne where S(r, 0) = 0 is the equation for the duct’s inside surface 

[4]. which transform slug flow heat-transfer solutions into and 
solutfons which approximate the physical situation. T(r, 8, 0) = TOO-, 01, (34 

ANALYSIS i.e. the temperature distribution is known at the entrance 

Consider the heat transfer in an arbitrary inscribable duct to the duct or 

which is illustrated in Fig. 1. The cross-sectional size and (3b) 

FIG. 1. Duct within which a circle can be inscribed. This is 
the general configuration of the inscribnble duct. 

shape of the duct do not vary in the axial z direction. The 
cross-section of the duct is composed of m llat and n curved 
sides within which a circle can be inscribed. The flat sides 
are each tangent to the inscribed circle and the curved sides 
are each circular arcs which coincide with the inscribed 
circle. The axis of the duct is selected so that it coincides 
with the axis of the inscribed circular cylinder. This speci- 
fication is by definition the most general form of an in- 
scribable duct. It is of interest to note that the radius of the 
inscribed circle is the hydraulic radius of the duct which is 
defined as twice the cross-sectional area divided by the 
wetted perimeter. Many ducts of engineering importance 
are inscribable. Included are : 

1. All triangular ducts 

where z1 > Z, i.e. the temperature is known at some point 
in the fluid downstream of the entrance region. 

It will now be shown that the solution of Equation (1) and 
its boundary conditions is 

T(r, 0. z) = T,(z) + ?fJ.L r* for z > Z (4) 
2kr, 

where T,(z) E T(O.0, z) is the temperature along the axis of 
the duct, Z is the thermal entrance length and rh is the 
hydraulic radius. 

It is noted that since S(r, 0) is independent of .z 

1 q,dS = constant. 
s 

(5) 
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This is the constant heat input per unit length of duct 
boundary condition. This combined with the condition that 
u = constant gives rise to a temperature field in the fully 
developed region of the duct which is a linear function of z. 
Therefore, 

PT 
- = 0 for z > Z. 
dZZ 

Employing this result and using the proposed expression 
for T, equation (4), in equation (1) yields 

dT, 2% 
for z > Z. 

dz kur, 
(7) 

Integration of this equation gives 

T,=*zz+B for z>Z (8) 
h 

where B is the constant of integration which can be evaluated 
from either boundary condition (3a) or (3b). Now the only 
other condition which equation (4) must meet is that of 
boundary condition (2) which can be rewritten as 

I~T aTdr aTd0 
(9) 

where dr and r, d0 are the two orthogonal vector components 
of -dn as illustrated in Fig. 2. Employing equation (4) in 

Where 
e, -4 

FIG. 2. Cross-section of the generalized inscribable duct. 

equation (9) one obtains 

since aT/&3 is zero and d9/dn is either finite or zero. Noting 
that dr is to r,, as - dn is to r,, equation (10) can be rewritten 
as 

I=_‘” _‘h =I, 

ril ( > rs 
(11) 

Therefore the temperature field is indeed given by equation 

(4). 
It should be mentioned that the problem being considered 

here is analogous to the problem ofdetermining the tempera- 

ture distribution in a long solid bar of inscribable cross- 
sectional shape when the surface heat flux is constant. With 
change of variable t = z/u, the transient temperatures and 
temperature distributions are given by the equations 
presented here for times greater than the time required for 
the shape of the temperature profile across the bar to 
become fully developed. 

It is seen by examination of equations (4) and (8) that if 
the wall heat flux is constant, the isothermal surfaces are 
paraboloids whose axes coincide with the duct’s axis. The 
temperature varies as the square of the distance from the 
duct’s axis and linearly with distance down the duct. In the 
r, t? plane, isothermal lines are circles whose centers coincide 
with the center of the inscribed circle so that the inscribed 
circle is itself an isothermal line. If the fluid in the duct is 
being heated, the coldest region at any cross-section is at 
the center of the inscribed circle and the hottest region is in 
the duct’s comer fartherest from the center of the inscribed 
circle. 

T, can be eliminated by integrating T over the cross 
section to obtain the bulk temperature. 

1 
T=- TdA=T+Q”;5 b 

A s 
c 

2kr, 
(12) 

A 

where 7 is the square of the radius of gyration of the cross- 
section. 

1 
7 = z 

s 
r2 dA = constant. 

a 

So, T is equal to T, plus a constant in the fully developed 
region. Solving for T, and substituting into equation (4) gives 

T=T,+$(r’-rZ) forz>Z. (14) 
h 

Furthermore, Tb can also be eliminated by making an 
overall energy balance in the entrance region as well as the 
rest of the duct. This yields 

(10) (15) 
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Table 1. Summary of results 

Temperature distribution for z > 2 

Cross-sectional shape of duct Square of radius of gyration 

7 = z + -& ,z [ef + (Li - eJ3] 
t-1 

Regular star 

7 = z + -& [e3 + (L - eJ3] 

Regular polygon 

r,Z ;1=-+ 
ab + bc + ca 4 abc 

3 6 3P 

Triangular 
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where TOb is the bulk temperature at the entrance. If the 
fluid enters the duct at constant temperature, T,, then 
TOh = T,. 

rz 
i”=+ 

ab+ac+bc 4abc --- 
3 6 3P 

(19) 

By combining equations f8), (12) and (15) it is found that where a, b and c are the lengths of the three sides. And for 
any m sided regular polygonal duct 

Thus one can determine the temperature of the fluid at any 
location past the thermal entrance region by knowing only 
the temperature of the fluid at the duct’s entrance. If on the 
other hand the temperature boundary condition is given by 
equation (3b) instead of f3a) 

(17) 

The square of the radius of gyration, 7, can be found by 
integrating over each region A~ and Aj as shown in Fig 2. 
The results add to give 

(18) 

for any inscribable duct. Also for any triangular duct 

A summary of these results is given in Table 1. 
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ai 
bt, 
CP 
F, 
G, 
G$ 
H, 
h, 
h*, 
K 
KP 
L 
M, 
m 

functions defined by equations (26); 
functions defined by equations (26); 
specific heat at constant pressure ; 
velocity function ; 
a constant defined by equation (lob) ; 
functions governed by equations (21); 
total heat released at the jet entrance; 
specific enthalpy; 
specific enthalpy of the reference state; 
thermal conductivity ; 

n, 
P” 
Q, 
40 
ri, 
s, 
T, 
u.3 
I4 0, 

x, Y, 
zi, 

radiation loss parameter defined by equation (9) ; 
Prandtl number ; 
radiation loss per unit mass ; 
functions defined by equations (28); 
functions defined by equations (28): 
a similarity variable defined by equation(lOa); 
temperature ; 
axial velocity given by equation (15); 
velocity component in Cartesian system ; 
spatial coordinates ; 
functions defined by equation (27). 

Planck mean absorption coefficient ; 
radiation loss parameter defined by equation (9); 
total momentum released at the jet entrance ; 
a function defined by equation (15); 

Greek symbols 
r, a function defined by equation (18); 

Il. a smilarity variable defined by equation (lOa) ; 
tr, viscosity ; 
P. density; 

t Assistant Professor of Mechanical Engineering. 
p*. 
0, 

density of the reference state ; 
Stefan-Boltzmann constant. 


